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1. INTRODUCTION 
 

 
The effects of climate change and the need to implement adaptation strategies in order to 
minimize potential impacts are more and more evident in Canada and around the world.  Despite 
the existence of numerous scientific evaluations, synthesis reports and other climate change 
information for projected changes these products are typically produced following a scientific 
approach providing information at a global or continental scale making them difficult to integrate 
at a local scale.   In 2018, the Government of Canada put in place the Canadian Centre for Climate 
Services (CCCS) as part of Environment and Climate Change Canada (ECCC) with the goal of 
providing access to relevant climate data, information and support in order to facilitate 
comprehension of climate change risks and impacts as well as assist development and 
implementation of climate change adaptation strategies across Canada.   
 
In relation to the present contract, contemporary spatial climate analogues for Canadian cities 
could be an effective approach for communicating climate change projections to the public.  More 
specifically the spatial analog approach works by identifying contemporary locations with similar 
climates (temperature, precipitation, or other climate variables and indices) to those projected by 
climate models for Canadian cities. As such, abstract projections are translated into clear, real-
world examples.  The tool developed here allows users to make customized calculations of spatial 
climate analogues for major Canadian cities offering much more flexibility compared to typical 
static map products where choice of included variables is generally predetermined for all sites in 
advance. Note that more intensive testing with potential users is needed to ensure the tool 
produces pertinent information to decision makers and that this information is interpreted 
correctly. Development of proper guidance for the use of the tool via user testing is recommended 
to avoid misuse. 
 
As specified in the Statement of work, the main objective of the proposed work is to develop a 
tool to allow custom computation and visualization of contemporary climate analogs for major 
Canadian cities for the CCCS.  Ouranos will provide the code developed and results for at least 
one major city per province and territory, for two climate scenarios covering the 1991-2100 period. 
The CCCS plans to potentially use the deliverables of this project to develop a Web tool for 
Canadians to help in the general effort to adapt to climate change.  
 
The contract deliverables include:  

• Production of climate indices datasets 
o Climate indices of the reference dataset  
o Climate indices of the CMIP6 bias-adjusted climate scenarios 

• Development of the analog-finder code and a visualization prototype 
o Analog-finder Jupyter notebook 
o Visualization prototype 

• A technical report describing the datasets, methodology and visualization choices.  
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2. DATASET PRODUCTION 

2.1 POPULATION DENSITY 

In a context where analogues will potentially be used in the formulation of adaptation strategies a 
non-urban analogue for a target city, despite having a very good fit in terms of climatic conditions, 
could remain of little use if goals include the creation hypotheses with respect to potential future 
impacts in an urban setting (e.g. urban flooding or heat waves) and possible solutions (e.g. 
comparison of building codes or green infrastructure).  As such, in order to constrain the analogue 
search to urban areas as similar as possible to the target, a gridded population density data layer 
was used in order to filter potential analogs candidate locations. As such the analog-finder code 
only considers points in the reference dataset where the population density is within a range 
defined around the target’s density.  As population density information is not provided within the 
reference dataset, we use the 4th version of the Gridded Population of the World dataset (GPWv4), 
developed by the Center for International Earth Science Information Network of the Columbia 
University. This collection of datasets includes very high resolution (30 arcsec) data of population 
count and density.  The selected version is adjusted so that 2015 country totals match the United 
Nations’ 2015 World Population Prospects (UN WPP) (CIESIN, 2018a). GPWv4 uses numerous 
data sources from 2005 to 2014 and employs methods to extrapolate results in order to give 
population estimates up to 2020, the year we used in the final deliverable. 
 
As GPWv4 population density data is adjusted to reflect the density only on the land area of the 
pixel, it cannot be regridded directly to the resolution of the climate reference dataset. We instead 
started from the population count and used the high-resolution land area fraction also provided 
by GPWv4 (CIESIN, 2018b) to perform a precise conservative regridding to the reference dataset 
grid producing a final map of the population density of the land-covered portion of each grid cell. 
The procedures are described in detail in Appendix A. 
 

Code for this section is found in the Masques.ipynb notebook, in the GitHub code repository. 

 

2.2 TARGET CITIES 

While the domain for the analogue search will be all urban areas of Canada and the United States, 
the client (CCCS) provided the coordinates (latitude and longitude) of the target Canadian cities 
and towns, considering a fixed and relevant criterion (e.g., location of the City Hall). The list was 
presented per province and territory as a priority ranking list (up to 5 cities per province and 
territory), which served as a reference. Initial plans included the analysis of a single city per 
province and territory as a first step for the project. In the end the number of sites was not an 
obstacle for the development of the datasets and code, and so all 65 locations were provided 
(Table 1). 
 
When computing the adjusted density map and validating it against public demographic data, a 
few issues with the city selection were raised and discussed with the CCCS.  
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A. 4 coastal cities had their city hall location within an “ocean” pixel of the reference dataset, 
which only has data on land. 

B. A few city hall locations did not fall within the cell with the highest population density of 
their urban area (using our adjusted density). 

C. The western part of Newfoundland had no selected location. 
D. Many small cities have urban areas significantly smaller than the grid cell size. 

 
Except for case A, these issues do not yield computational problems, but may affect how the 
results are interpreted or how the tool is used. To address issues A and B, we recomputed the 
city locations as the center of the land-covered cell with the highest population density within 3x3 
square around the specified city hall location. For issue C, Conception Bay, which is quite close 
to St John’s, was replaced by Corner Brook. The only impact of issue D is that the adjusted density 
on the map is much lower than that reported for the urban area only. No real solution is available 
without artificially adjusting the density map, which would be quite complex to apply over all of 
North America. 
 

City data is processed by some sections of the Masques.ipynb notebook and stored in 

geo/cities.nc or geo/cities.geojson, as well as on PAVICS’s geoserver. 

 
 

Table 1 Selected cities 

Province / 
territory 

City Population City hall coords Choice explanation 

Alberta Calgary 1239220 -114,05 51,05 The four largest population centres in 
Alberta. Edmonton 932546 -113,49 53,55 

Red Deer 100418 -113,81 52,27 

Lethbridge 92729 -112,83 49,69 

Grande Prairie 63166 -118,79 55,17 Largest Population centre in North 
Alberta 

British 
Columbia 

Vancouver  631486 -123,12 49,26 Largest population centre in Metro 
Vancouver district 

Kelowna  127380 -119,50 49,89 Largest population centre in Central 
Okanagan district 

Abbotsford 141397 -122,33 49,05 Largest population centre in Fraser 
Valley district 

Victoria 85792 -123,36 48,43 The capital 

Prince George 74003 -122,74 53,91 The largest population centre in 
Fraser-Fort George district 

Manitoba Winnipeg 705244 -97,14 49,90 The five largest population centres in 
Manitoba Brandon 48859 -99,95 49,84 

Steinbach 15829 -96,69 49,53 

Thompson 13678 -97,85 55,75 

Portage la Prairie 13304 -98,29 49,97 

New 
Brunswick 

Moncton 71889 -64,78 46,09 The five largest population centres in 
New Brunswick Saint John 67575 -66,06 45,27 

Fredericton 58220 -66,64 45,96 

Dieppe 25384 -64,75 46,10 

Miramichi 17537 -65,55 47,00 

Newfoundland 
and Labrador 

St. John's 106172 -52,71 47,56 The three largest Population centres 
in Newfoundland Conception Bay 

South 

24848 -52,97 47,51 

Mount Pearl 24284 -52,81 47,52 

https://en.wikipedia.org/wiki/Red_Deer,_Alberta
https://en.wikipedia.org/wiki/Lethbridge
https://en.wikipedia.org/wiki/Grande_Prairie
https://en.wikipedia.org/wiki/Metro_Vancouver
https://en.wikipedia.org/wiki/Kelowna
https://en.wikipedia.org/wiki/Abbotsford,_British_Columbia
https://en.wikipedia.org/wiki/Greater_Victoria,_British_Columbia
https://en.wikipedia.org/wiki/Prince_George,_British_Columbia
https://en.wikipedia.org/wiki/Winnipeg
https://en.wikipedia.org/wiki/Brandon,_Manitoba
https://en.wikipedia.org/wiki/Steinbach,_Manitoba
https://en.wikipedia.org/wiki/Thompson,_Manitoba
https://en.wikipedia.org/wiki/Portage_la_Prairie
https://en.wikipedia.org/wiki/Dieppe,_New_Brunswick
https://en.wikipedia.org/wiki/Miramichi,_New_Brunswick
https://en.wikipedia.org/wiki/St._John%27s,_Newfoundland_and_Labrador
https://en.wikipedia.org/wiki/Conception_Bay_South,_Newfoundland_and_Labrador
https://en.wikipedia.org/wiki/Conception_Bay_South,_Newfoundland_and_Labrador
https://en.wikipedia.org/wiki/Mount_Pearl,_Newfoundland_and_Labrador
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Corner Brook 19806 -57,95 48,95 Largest city on the western side of the 
Island 

Happy Valley-
Goose Bay 

7552 -60,33 53,30 Two largest Population centres in 
Labrador 

Labrador City 7367 -66,91 52,95 

Nova Scotia Halifax 316701 -63,58 44,65 The five largest population centres of 
Nova Scotia Cape Breton - 

Sydney 

29904 -60,20 46,14 

Truro  22954 -63,28 45,37 

New Glasgow  18665 -62,64 45,59 

Glace Bay 17556 -59,95 46,21 

Ontario Toronto 2731571 -79,38 43,65 The two largest population centers in 
Ontario  Ottawa 934243 -75,69 45,42 

London 494069 -81,25 42,99 The 6th largest population center in 
Ontario (eliminated suburbs of 
Toronto) 

Sudbury 161531 -80,99 46,49 Largest city in Northern Ontario 

Moosonee 1481 -80,61 51,29 The largest population center in the 
''far northern Ontario'' 

Prince Edward 
Island 

Charlottetown  44739 -63,13 46,24 The 5 largest population centers in 
PEI Summerside 13814 -63,79 46,39 

Stratford 9706 -63,09 46,23 

Cornwall  5348 -63,20 46,24 

Montague  1961 -62,65 46,17 

Québec Montréal  1762976 -73,55 45,51 The 4 largest population centers in 
Quebec (eliminated suburbs or 
Montréal and Ottawa) 

Québec 538738 -71,21 46,81 

Sherbrooke 165005 -71,89 45,40 

Saguenay 144989 -71,06 48,43 

Chibougamau 7504 -74,37 49,91 Largest population center in North 
Quebec 

Saskatchewan Saskatoon 246376 -106,66 52,13 The 5 largest population centers in 
Saskatchewan 
  

Regina 215106 -104,62 50,45 

Prince Albert 35926 -105,75 53,20 

Moose Jaw 33890 -105,53 50,39 

Swift Current 16604 -107,80 50,29 

Northwest 
Territories 

Yellowknife 19234 -114,38 62,45 The 5 largest population centers in 
the Northwest Territories Hay River  3606 -115,79 60,81 

Inuvik 3463 -133,73 68,36 

Fort Smith 2093 -111,88 60,01 

Behchokǫ̀ 1926 -116,05 62,83 

Yukon Whitehorse 25085 -135,05 60,72 The 5 largest population centers in 
Yukon Dawson City 1375 -139,43 64,06 

Watson Lake 790 -128,72 60,06 

Haines Junction 613 -137,51 60,75 

Carmacks 493 -136,29 62,10 

Nunavut  Iqaluit 7082 -68,52 63,75 The 5 largest population centers in 
Nunavut Rankin Inlet 2441 -92,08 62,81 

Arviat  2318 -94,06 61,11 

Baker Lake 1872 -96,06 64,31 

  Cambridge Bay 1619 -105,06 69,12 

https://en.wikipedia.org/wiki/Happy_Valley-Goose_Bay,_Newfoundland_and_Labrador
https://en.wikipedia.org/wiki/Happy_Valley-Goose_Bay,_Newfoundland_and_Labrador
https://en.wikipedia.org/wiki/Labrador_City,_Newfoundland_and_Labrador
https://en.wikipedia.org/wiki/City_of_Halifax
https://en.wikipedia.org/wiki/Sydney,_Nova_Scotia
https://en.wikipedia.org/wiki/Sydney,_Nova_Scotia
https://en.wikipedia.org/wiki/Truro,_Nova_Scotia
https://en.wikipedia.org/wiki/New_Glasgow,_Nova_Scotia
https://en.wikipedia.org/wiki/Glace_Bay,_Nova_Scotia
https://en.wikipedia.org/wiki/Toronto
https://en.wikipedia.org/wiki/London,_Ontario
https://en.wikipedia.org/wiki/Charlottetown,_Prince_Edward_Island
https://en.wikipedia.org/wiki/Summerside,_Prince_Edward_Island
https://en.wikipedia.org/wiki/Stratford,_Prince_Edward_Island
https://en.wikipedia.org/wiki/Cornwall,_Prince_Edward_Island
https://en.wikipedia.org/wiki/Montague,_Prince_Edward_Island
https://en.wikipedia.org/wiki/Montréal
https://en.wikipedia.org/wiki/Québec_(ville)
https://en.wikipedia.org/wiki/Sherbrooke
https://en.wikipedia.org/wiki/Saguenay,_Quebec
https://en.wikipedia.org/wiki/Chibougamau
https://en.wikipedia.org/wiki/Prince_Albert,_Saskatchewan
https://en.wikipedia.org/wiki/Yorkton
https://en.wikipedia.org/wiki/Swift_Current
https://en.wikipedia.org/wiki/Yellowknife
https://en.wikipedia.org/wiki/Hay_River,_Northwest_Territories
https://en.wikipedia.org/wiki/Inuvik,_Northwest_Territories
https://en.wikipedia.org/wiki/Fort_Smith,_Northwest_Territories
https://en.wikipedia.org/wiki/Behchokǫ̀
https://en.wikipedia.org/wiki/Whitehorse
https://en.wikipedia.org/wiki/Dawson_City
https://en.wikipedia.org/wiki/Watson_Lake,_Yukon
https://en.wikipedia.org/wiki/Haines_Junction
https://en.wikipedia.org/wiki/Carmacks,_Yukon
https://en.wikipedia.org/wiki/Iqaluit
https://en.wikipedia.org/wiki/Rankin_Inlet
https://en.wikipedia.org/wiki/Arviat
https://en.wikipedia.org/wiki/Baker_Lake,_Nunavut
https://en.wikipedia.org/wiki/Cambridge_Bay
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2.3 CLIMATE INDICES 

Determining climate analogs for a range of plausible future climates at a target location requires 
1) the selection of annual climate indices (the climate characteristics on which the analogue is 
based), 2) an ensemble of climate scenarios for these indices for the target cities’ future period 
that reasonably covers the uncertainty in the projected changes, and 3) reference indices for the 
potential analogs for the recent-past covering the entire search territory of interest. The chosen 
annual indices are all derived from daily time series of temperature and precipitation. They are 
listed in Table 2, with the variable name to be found in the datasets, a short definition and the 
type of bias-adjustment, as explained in section 2.5.4.  

 

Climate indices are defined in the analog.yml file, with French metadata translations (unused in 

this project for now) in analog.fr.json. All are based on existing xclim indicators. 

 
Table 2 Climate indices 

Name  Definition Adj 

Total precipitation RR 
The annual total amount of precipitation (rain and 
snow combined). 

× 

Hottest day TXx 
The annual maximum of daily maximum temperature 
(Tmax). 

+ 

Frost days FD 
Annual number of days with minimum daily 
temperature below 0°C. 

× 

Growing season length GSL 
The annual number of days between the last 
occurrence of Tmin < 0°C in spring and the first 
occurrence of Tmin < 0°C in fall. 

× 

Growing degree days (5°C) GDD5 
The annual number of degree days accumulated 
above a threshold temperature of 5°C. 

× 

Heating degree days HDD 
The annual number of degree days accumulated 
below 17°C. 

× 

Last Spring Frost LSF 
The spring date after which there are no daily 
minimum temperatures during the growing season 
less than 0°C (Tmin > 0°C). 

× 

First Fall Frost FAF 
The first date in the fall (or late summer) on which 
the daily minimum temperature is less than 0°C 
(Tmin < 0°C). 

× 

Growing degree days (10°C) GDD10 
The annual number of degree days accumulated 
above a threshold temperature of 10°C. 

× 

Degree days above 0°C GDD0 
The annual number of degree days accumulated 
above a threshold temperature of 0°C. 

× 

Mean temperature TG 
Annual average of the daily mean temperature 
(Tmean). 

+ 

Coldest day TNn 
Annual minimum of daily minimum temperature 
(Tmin). 

+ 

Days with Tmax > 30°C TXgt30 Annual number of days with Tmax > 30°C. × 

Days with Tmax > 25°C TXgt25 Annual number of days with Tmax > 25°C. × 
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Tropical nights TNgt22 
Annual number of days with the daily minimum 
temperature (Tmin) greater than 22°C. 

× 

Cooling degree days CDD 
The annual number of degree days accumulated 
above 18°C. 

× 

Maximum 1-day precipitation RX1day 
The largest annual precipitation total that falls in a 
single day. 

× 

Wet days R20mm 
The annual number of days with precipitation > 20 
mm. 

× 

Maximum 5-day precipitation RX5day 
The annual maximum total precipitation that falls 
over a consecutive 5-day period. 

× 

Ice days ID 
The annual number of days when the daily maximum 
temperature (Tmax) is less than 0°C. 

× 

 

2.4 CLIMATE INDICES FOR THE REFERENCE DATASET 

The chosen reference dataset is ERA5-Land (spatial resolution of ~9 km) over the period 1991-
2020 (Muñoz Sabater, 2019). The analog search domain, containing all considered potential 
analogs, will be Canada and the United States. The choice of this reference was oriented by 
previous and current work being done at Ouranos for the ESPO-R5 project1. For this project, 
multiple reanalysis datasets were compared with ECCC Adjusted and Homogenized Canadian 
Climate Data (AHCCD) daily station observations across a large set of criteria.  ERA5-land was 
retained as the reference dataset for the ESPO-R5 project after an evaluation of multiple 
candidate datasets against observed data for the variables of daily maximum and minimum 
temperatures, and daily total precipitation for the period 1981-2010.  The evaluation criteria 
included: 
 

1. a comparison of the mean annual cycle, 
2. an evaluation of the inter-annual seasonal time series  
3. a seasonal evaluation of the quantile bias (5, 25, 50, 75, 95) of the daily values between 

station data and the various candidate datasets 
 
Summary results of these quantitative comparisons indicate that there is no clear winner for the 
choice of reference dataset, with results varying by season or criteria1. However, ERA5-Land was 
retained for the analog project as it generally shows good results in the above comparisons while 
also having a high spatial resolution and availability at least up to 2020.   
 
The ERA5-Land hourly temperature and precipitation data were downloaded from the Copernicus 
Data Store for the 1991-2020 period, subset over North America before being resampled to a 
daily frequency. 
 
Climate indices were computed on these daily timeseries using xclim (Logan et al., 2022), before 
being uploaded onto the PAVICS platform. The adjusted population density map was added to 
this dataset as an extra invariant variable. 
 

Climate indices are computed with the calc_indices.py script. 

                                                
1 Preliminary results for the ESPO-R5 v1.0 can be consulted at https://github.com/Ouranosinc/ESPO-R and 
as such are not detailed here 

https://github.com/Ouranosinc/ESPO-R
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2.5 CLIMATE INDICES OF THE CMIP6 BIAS-ADJUSTED 
CLIMATE SCENARIOS 

The future climate scenarios consist of indices computed for bias-adjusted CMIP6 simulations 
over 1950-2100 (Eyring et al., 2016) for each of the target cities. The same simulation ensemble 
is used for all target cities. After discussion, it was decided to use the SSP2-4.5 and SSP5-8.5 
emission scenarios. To avoid over representation of individual climate models within the 
ensemble a single realization per climate model was selected for the project 
 

2.5.1 Selection of the CMIP6 simulations 

The objective was to obtain a consistent ensemble that was reasonably small to be usable and 
help the interpretation, while maximizing the climate variability over the chosen cities and indices. 
We first gathered all CMIP6 realizations that were available on the Pangeo cloud storage,2 where 
the three required variables of daily minimum and maximum temperature (tasmax and tasmin 
respectively) as well as daily total precipitation (pr) are available.  We further only selected those 
simulations where the pairs of experiments (SSP2-4.5 and SSP5-8.5) as well as the common 
historical run are available. The data was extracted over the 65 cities by bilinear interpolation. At 
the moment this step was executed, we found 26 models for a total of 211 realizations that fulfilled 
all those requirements. 14 of these models only provided a single realization (for each emission 
scenario). The goal of the next step is thus to choose the most appropriate realization for each of 
the 12 other multi-realization ensembles. Table 3 shows the number of realizations from which 
the selected one was taken for each member of the final ensemble. 
 
The ensemble was reduced by using a combination of principal components analysis (PCA) and 
the KKZ ensemble reduction method.  

1. PCA: 
a. The 20 indices are computed on all members 
b. The mean change is computed as the difference between the mean over 2071-

2100 and the one over 1991-2020. 
c. Each delta is averaged over the 65 cities, resulting in (20 indices x 2 SSPs =) 40 

criteria. 
d. Assuming each criterion is a dimension, we conduct Principal Component Analysis 

(PCA) on this ensemble of 157 points in order to reduce it to its 3 principal 
components. 

2. KKZ: 
a. The first selected realization is the one closest to the ensemble centroid (in the 3-

dimensional space) 
b. The next realization is the one that has the maximal average distance with all 

previously selected realizations 
c. All the realizations coming from the same model as the selected one are removed 

from the ensemble. 
d. Repeat b-c until the ensemble is empty. 

 
The KKZ algorithm is based on Cannon, 2015. As the principal components are standardized at 
end of the “PCA” part, a simple Euclidean metric is used for computing distances in the “KKZ” 

                                                
2 https://pangeo-data.github.io/pangeo-cmip6-cloud/ 
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part. With our original datasets, the 40 criteria reduced to 3 components each explaining 75%, 
12% and 4% of the ensemble variance, respectively.  The final ensemble has 24 members, shown 
on  
Table 3. The ensemble is ordered so that sub-ensembles can easily be chosen. Each member 
adds less information than the previous one about the overall spread. Two models3 were left out 
of the analysis because of corrupted data on the Pangeo store at the moment this analysis was 
made. 
 

The selection procedure is coded in the Simulations CMIP6.ipynb notebook. The download is 

performed by the extract_cmip6.py script and the index calculation by calc_indices.py. The 

final list of members is stored in config.yml. Parts of the process described here were done in an 

interactive shell and might be absent from the provided code. 

 
Table 3 CMIP6 simulations ensemble (ordered) 

Institution Source model Realization id N realizations 

MIROC MIROC-ES2L r1i1p1f2 1 
EC-Earth-Consortium EC-Earth3-Veg-LR r3i1p1f1 3 

CCCma CanESM5 r13i1p1f1 50 
IPSL IPSL-CM6A-LR r14i1p1f1 6 
MRI MRI-ESM2-0 r1i1p1f1 5 

MPI-M MPI-ESM1-2-LR r3i1p1f1 10 
CAS FGOALS-g3 r4i1p1f1 3 

NOAA-GFDL GFDL-CM4 r1i1p1f1 1 
MIROC MIROC6 r1i1p1f1 50 

NIMS-KMA KACE-1-0-G r1i1p1f1 3 
NOAA-GFDL GFDL-ESM4 r1i1p1f1 1 

CMCC CMCC-ESM2 r1i1p1f1 1 
NUIST NESM3 r1i1p1f1 2 
INM INM-CM4-8 r1i1p1f1 1 

CSIRO-ARCCSS ACCESS-CM2 r3i1p1f1 3 
NCC NorESM2-LM r1i1p1f1 1 

EC-Earth-Consortium EC-Earth3 r125i1p1f1 57 
NCC NorESM2-MM r1i1p1f1 1 
INM INM-CM5-0 r1i1p1f1 1 
BCC BCC-CSM2-MR r1i1p1f1 1 

CNRM-CERFACS CNRM-CM6-1 r1i1p1f2 1 
CNRM-CERFACS CNRM-ESM2-1 r1i1p1f2 1 

EC-Earth-Consortium EC-Earth3-Veg r4i1p1f1 5 
EC-Earth-Consortium EC-Earth3-CC r1i1p1f1 1 

 

2.5.2 Description of the post-processing method 

The adjustment procedure then uses xclim algorithms to adjust simulation bias following a 
quantile mapping procedure. In particular, the algorithm used is inspired by the "Detrended 
Quantile Mapping" method described by Cannon et al., 2015. The procedure is univariate, 

                                                
3 AS-RCEC-TaiESM1 and KIOST-ESM. 
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bipartite, acts differently on the trends and the anomalies and is applied iteratively on each day of 
the year (grouping) and on each target city. 
 
In the following methods descriptions, 𝑌𝑟 is the reference timeseries from ERA5-Land, 𝑋𝑐 is the 

simulated timeseries over the reference period (1991-2020) and 𝑋𝑠 is the full simulated timeseries 
(1950-2100).  

2.5.2.1 Variables 

Adjustments are applied separately for each of the 3 variables. Note, adjusting tasmax and tasmin 
independently can lead to physical inconsistencies in the final data (e.g. cases with tasmin > 
tasmax) (Agbazo & Grenier, 2020; Thrasher et al., 2012). To ensure a resulting dataset that is as 
physically consistent as possible, within the limitations of univariate bias-adjustment, we compute 
the daily temperature range (dtr = tasmax - tasmax) and adjust this variable, in addition to tasmax 
and pr. A final adjusted tasmin variable is reconstructed after the bias-adjustment. 
 
While tasmax has no physical bounds in practice, this is not the case for pr and dtr where a lower 
bound of zero exists. As such, the adjustment process explained below exists in two cases: 
additive and multiplicative. In the latter, it is mathematically impossible for adjusted data to fall 
below zero yet necessitates special pre-processing steps to avoid division by zero (see details 
below). 
 

2.5.2.2 Bias-adjustment 

The bias adjustment acts independently on each day of the year and each grid point. To make 
the procedure more robust a window of 31 days around the current day of year is included in the 
inputs of the calibration (training step). For example, the adjustment for February 1 (day 32) is 
calibrated using data from January 15 to February 15, over the 30 years of the reference period.  
For leap years, this would mean that there are 4 times fewer datapoints for the 366th day of the 
year. To circumvent this issue, we convert all inputs to a "noleap" calendar by dropping data for 
the 29th of February, except for simulations using the "360 day" calendar. In the latter case, the 
simulations are untouched but the reference data is converted to that calendar by dropping extra 
days taken at regular intervals4. 
 
Detrending 
For each day of the year and each grid point, we first compute the averages and "anomalies" of 
the reference data and the simulations over the reference period, 1991-2020. Depending on the 
variable, anomalies are either taken additively or multiplicatively: 
 

𝑌𝑟 = {
𝑌𝑟̅ + 𝑌𝑟

′, 𝑡𝑎𝑠𝑚𝑎𝑥

𝑌𝑟̅ ∙ 𝑌𝑟
′, 𝑑𝑡𝑟, 𝑝𝑟

 

and similarly, for 𝑋𝑐,  𝑋𝑐
̅̅ ̅ and 𝑋𝑐

′ . 
 
Instead of a simple moving mean, 𝑋𝑠 is detrended with a locally weighted regression (LOESS) 
(Cleveland, 1979). We chose this method for its slightly heavier weights given at the center of the 
moving window, reducing impacts of abrupt interannual changes on the trend and anomalies. It 
also has a more robust handling of the extremities of the timeseries. The LOESS window had a 

                                                
4 On a normal year, February 6th, April 20th, July 2nd, September 13th and November 25th are dropped. 
For a leap year, it is January 31st, April 1st, June 1st, August 1st, September 31st and December 1st. 
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30-year width and a tricube shape, the local regression was of degree 0 and only one iteration 
was performed. The detrending was applied on each day of the year but after averaging over the 

31-day window, and it yielded the trend 𝑋𝑠
̅̅ ̅ and the residuals 𝑋𝑠

′. Here again, the process can be 
additive or multiplicative. 
 
Adjustment of the residuals 
With 𝐹𝑌𝑟

′ and 𝐹𝑋𝑐
′ the empirical cumulative distribution functions (CDF) of 𝑌𝑟

′ and 𝑋𝑐
′  respectively, 

an adjustment factor function is first computed:  

𝐴+(𝑞) ≔ 𝐹𝑌𝑟
′

−1(𝑞) − 𝐹𝑋𝑐
′

−1(𝑞)                   𝐴×(𝑞) ≔
𝐹𝑌𝑟

′
−1(𝑞)

𝐹
𝑋𝑐

′
−1(𝑞)

 

 
Where 𝑞 is a quantile (in range [0, 1]), 𝐴+(𝑞) is the additive function used with tasmax and 𝐴×(𝑞) 
the multiplicative one, used with pr and dtr. The CDFs are estimated for each day of the year from 
the 30 31-day windows. In the implementation, maps of 𝐴 are saved to disk by sampling 𝑞 with 
50 values, going from 0.01 to 0.99 by steps of 0.02. 
 
The adjustment is then as follows: 

𝑋𝑏𝑎
′ = 𝑋𝑠

′ + 𝐴+ (𝐹𝑋𝑐
′(𝑋𝑠

′))              𝑋𝑏𝑎
′ = 𝑋𝑠

′ ⋅ 𝐴× (𝐹𝑋𝑐
′(𝑋𝑠

′)) 

 
Nearest neighbor interpolation is used to map 𝐹𝑋𝑐

′(𝑋𝑠
′)  to the 50 values of 𝑞 . Constant 

extrapolation is used for values of 𝑋𝑠
′ outside the range of 𝑋𝑐

′ . 
 
Adjustment of the trend 
In the training step, a simple scaling or offset factor is computed from the averages: 
 

𝐶+ =  𝑌𝑟̅ − 𝑋𝑐
̅̅ ̅              𝐶× =

𝑌𝑟̅

𝑋𝑐
̅̅ ̅

 

 
This factor is applied to the trend in the adjustment step: 
 

𝑋𝑏𝑎
̅̅ ̅̅ ̅ =  𝑋𝑠

̅̅ ̅ + 𝐶+              𝑋𝑏𝑎
̅̅ ̅̅ ̅ =  𝑋𝑠

̅̅ ̅ ⋅ 𝐶× 
 
Final scenario 
Finally, the bias-adjusted timeseries for this day of year, grid point and variable is: 
 

𝑋𝑏𝑎 = 𝑋𝑏𝑎
̅̅ ̅̅ ̅ + 𝑋𝑏𝑎

′                          𝑋𝑏𝑎 =  𝑋𝑏𝑎
̅̅ ̅̅ ̅ ⋅ 𝑋𝑏𝑎

′  

 

2.5.2.3 Pre-processing of precipitation 

However, the multiplicative mode is prone to division by zero, especially with precipitation where 
values of 0 are quite common. This problem is avoided by modifying the inputs of the calibration 
step where the zeros of precipitation are replaced by random values between 0 (excluded) and 
0.01 mm/d. The dtr timeseries are not modified since it is almost impossible to have zeros for that 
variable and the few that appear are dissolved by the aggregations of the calibration step. 
 
As observed by Themeßl et al., (2012), when the model has a higher dry-day frequency than the 
reference, the calibration step of the quantile mapping adjustment will incorrectly map all dry days 
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to precipitation days, resulting in a wet bias. The frequency adaptation method finds the fraction 
of "extra" dry days: 
 

Δ𝑃𝑑𝑟𝑦 =
𝐹𝑋𝑐

(𝐷) − 𝐹𝑌𝑟
(𝐷)

𝐹𝑋𝑐
(𝐷)

 

 
Where 𝐷  is the dry-day threshold, taken here to be 1 mm/d. This fraction of dry days is 

transformed into wet days by injecting random values taken in the interval [𝐷, 𝐹𝑌𝑟

−1 (𝐹𝑋𝐶
(𝐷))]. Both 

pre-processing functions are applied only on the calibration step inputs (𝑌𝑟 and 𝑋𝑐) before the 
division between average and anomalies. As such, only the adjustment factors are impacted by 
them and there is no explicitly injected precipitation in the final scenarios. 
 

The algorithms described in this section are implemented in xclim. The daily adjustment for this 

project is done in the bias_adjust_daily.py script. 

2.5.3 Climate indices 

The 20 climate indices are computed over the bias-adjusted daily series of tasmax, tasmin and 
pr.  
 

Climate indices computation is done in calc_indices.py. 

2.5.4 Self-analog test and second bias-adjustment 

As suggested by Grenier et al., (2019), data used as input to the spatial analog analysis should 
pass the self-analog test, i.e. the spatial analog of a given location over the reference period 
should be that same location. Because of random variations between the historical climate 
simulation and the reference data, climates indices over the reference period could be somewhat 
different and the self-analog test might not pass. In order to correct this, authors of the cited article 
recommend applying a second bias-adjustment step over the yearly indices. 
 
Here, we checked the self-analogue test by finding the best spatial analog for each timeseries 
and each climate index. The distance between that “best” location and the target city is then 
measured. Ideally, both would be the same grid cell and distances would be 0. To decide which 
second bias-adjustment strategy was best, we counted the number of cities, scenarios and 
realisations that showed a better self-analog (closer to the target) when using doubly bias-
adjusted series than when using the single bias-adjustment version. If the proportion of timeseries 
that are closer exceeds 50%, then we can say that this second bias-adjustment is beneficial for 
the self-analog test of that climate index.  Remember that, in order to keep it simple, we only 
computed univariate spatial analogues (considering one index at a time). 
 
While the indices used in the study by Grenier et al. (2019) were adjusted in an additive mode, 
this is not the case for most of the indices used here, which have a physical bound at 0 and need 
to be adjusted multiplicatively (see column “Adj” of Table 2). Moreover, for many target cities and 
indices have averages of 0. For example, the number of days with tasmin over 22°C in Iqaluit is 
0 until the end of the century for all members of the ensemble, even with the SSP5-8.5.  In general, 
the bias stationarity hypothesis doesn’t hold for most indices included here, even if it could be 
assumed when adjusting the daily variables. 
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We decided to generate two versions of the second bias-adjustment and check if the self-analog 
test results were improved or not.  The first method is the same DQM method as used on the 
daily data, but without the day-of-year moving window. The second one is a simple scaling/offset 
that only adjusts the mean. Using the same notation as above, but with 𝑋  representing the 
climates indices computed over the daily bias-adjusted timeseries:  

𝑋𝑏𝑎 = 𝑋𝑠 + (𝑌𝑟̅ −  𝑋𝑐
̅̅ ̅ )                             𝑋𝑏𝑎 = 𝑋𝑠 ⋅

𝑌𝑟̅

𝑋𝑐
̅̅ ̅

 

The division in the second (multiplicative) equation is highly problematic for all those indices 
where the average over the reference period is (near-) 0. To avoid division by zero or extremely 
large adjustment factors, we excluded some timeseries from the adjustment process. For each 
target city and emission scenario pair, if any of the following conditions was true for any of the 24 
realizations, the bias adjustment step was skipped for that pair: 

• The mean of 𝑌𝑟 is smaller than 1000x its maximum 

• The mean of 𝑋𝑐 is smaller than 1000x its maximum 

• The standard deviation of 𝑋𝑠 over the 2071-2100 horizon is larger than 5 times the one 
over the 1991-2020 period. 

The first two conditions ensure that all indices where the reference period average is near 0 are 
skipped, in a unit-agnostic way. The last condition is a basic test of the bias stationarity 
hypothesis: if the distribution completely changes shape with climate change, it is impossible for 
the simple bias-adjustment methods we are using to improve the results. 
 
With this safety code in place, the second bias adjustment was skipped for a few pairs for the 
CDD, FAF, GDD10, R20mm and TXgt25 indices while almost all target cities and scenarios were 
left intact for TNgt22 and TXgt30. Figure 2-1 Tropical nights (Tmin > 22°C) [days] for the SSP5-
8.5 scenario for the city of Charlottetown (PEI). Panel A shows the index data adjusted with the 
scaling method while B shows the index without a second bias-adjustment.Figure 2-1 shows an 
example where the scaling adjustment was applied on data that checked all above conditions 
(panel A). The final dataset for this case was therefore not bias-adjusted a second time. While 
the data is available on the server, it is not used in the dashboard, as explained in section 223.1.1. 
 
As a first evaluation of the adequacy of the second bias-adjustment, we plotted figures with the 
simulated and reference timeseries for each scenario, climate index and city. While this generates 
a large number of images, it helped in discovering some bugs that were solved with the set of 
conditions explained above (see Figure 2-1 for an example). All figures were provided to the 
CCCS. 
 
Finally, when the self-analog test was computed over these three versions of the climate indices 
(single, dqm and scaling), no clear improvement could be seen for the doubly adjusted indices. 
Figure 2-3 shows the proportion of improved cases for each index and bias-adjustment method. 
As it can be seen, the improvement depends on the index, but, overall, we found that DQM 
improved 39% of the self-analogs, while Scaling only improved 16%. In both cases, it seems that 
the second adjustment worsens the self-analogs more than it improves it, so we recommend 
sticking to the single adjustment versions. The final dashboard can be run using any of the three 
versions, but the default choice is to use the single-adjustment indices. 

The second bias-adjustment is done with bias_adjust_annual.py. The self-analog test is 

implemented in compute_selfanalogy.py. The analysis of this test’s results was done 

interactively and the code couldn’t be provided in the Github repository. The figures are generated 
by the fig_indices_comp.py script. 
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Figure 2-1 Tropical nights (Tmin > 22°C) [days] for the SSP5-8.5 scenario for the city of Charlottetown 
(PEI). Panel A shows the index data adjusted with the scaling method while B shows the index without a 
second bias-adjustment. Notice the different Y axes. 

 

 
Figure 2-2 Maximum 1-day precipitation amount [mm] for the SSP5-8.5 scenario for the city of Montréal 
(QC). Panel A shows the index without a second bias-adjustment. Panel B and C show the data for the 
scaling and DQM methods, respectively. Notice the different Y axes. 

 
Figure 2-3 Proportion of improved self-analogs when bias-adjusting the yearly indices  
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3. DEVELOPMENT OF THE ANALOG-FINDER 
PROPOTYPE 

 
 
 
The analog finder code was written in two versions, both including the same overall visualizations 
and options: a Jupyter notebook and a Panel dashboard. The notebook is meant to be used by 
users comfortable in the Python language, while the dashboard is a web application with a 
simplified user interface for controlling the spatial analog search. The following sections describe 
the analog finding code and the various visualizations implemented. 
 

3.1 FINDING THE BEST SPATIAL ANALOGS 

The analog finder enables users to make multiple query options. For a specific query, the user 
chooses:  

• a target city, among the 65 selected (see Table 1) 

• a 30-year future period of interest, with ending year from 2020 to 2100 

• an emission scenario (either SSP2-4.5 or SSP5-8.5) 

• up to 4 climate indices (see Table 2) 

• a factor defining the target range for the population density of the analogs5. The lower 
bound of the range cannot be under 10 people/km². 

 
The following options are controllable in the purely notebook version of the code as well as in the 
notebook code which launches the dashboard, but are available in the user-interface of the 
dashboard prototype: 

• the climate indices dataset to use (single-adjustment, double-dqm or double-scaling), 
default is “single-adjustment”. 

• the number of realizations 𝑁 (up to 24 from Table 3) to include in the search, default is 
12. 

• the best analog selecting method (see below), default is “closest-percentile”. 

• the thresholds for the analogue quality categories. 

• various options for the appearance of the plots and widgets. 
 

For each realization of the ensemble, a dissimilarity metric is used to compare the target future 
climate to each urban area (ERA5-Land grid tile) of the search domain (with a population density 
within the requested range), and to select the best analog. Hence, for a specific target city, 
emission scenario, 30-year period and set of indices, the analog finder identifies as many analogs 
as there are realizations (𝑁) in the ensemble. The dissimilarity metric chosen for the project is the 
Zech-Aslan energy statistic (Aslan & Zech, 2002), which was identified by Grenier et al., (2013) 
as the most suitable (among 6 investigated metrics) for climate analog search.  
 

                                                
5 Example: for a factor of 2, the analog search includes all grid cells of North America with a population 
density between half and twice the one of the target city. 
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3.1.1 Determining usable indices 

The Zech-Aslan dissimilarity metric involves the computation of the standard deviation of each 
climate index and will fail in the cases where all the values are the same. As shown above, this 
happens with some indices in some cities. In the dashboard, each time the user changes the 
target city, emission scenario or period, the list of available climate indices is updated to remove 
any cases where any of the following conditions are true: 

1. the standard deviation of the index over the reference data is 0 
2. the standard deviation of the index over the simulated data over the reference period is 0 

for any realization 
3. the standard deviation of the index over the simulated data over the target period is 0 for 

any realization 
While the checks are not exactly the same, this is quite similar to the conditions for the second 
bias-adjustment. Thus, this check removes the timeseries that were not adjusted in the first place, 
when using the double-dqm and double-scaling data. For example, in some northern cities the 
TXgt30 index is always zero in the reference period (condition 1). As there is no variation (no 
standard deviation), we can’t compute a dissimilarity score. The checks above will remove the 
index from the available list when that city is selected. If there were some warm days in the 
observational records (the reference), even if only one member of the ensemble shows a null 
standard deviation over the two periods, the index is removed, instead of having an incomplete 
simulation ensemble (condition 2 and 3). 
 

3.1.2 Interpreting the dissimilarity score 

The Zech-Aslan metric doesn’t follow a specific distribution. Rather, the distribution of the results 
depends on that of the inputs, making it impossible to compare scores obtained from different 
sets of indices. Moreover, the score is a single number, theoretically ranging from −∞ to ∞ (but 
rarely under 0 in practice); interpreting these raw numbers is not easy. This is in opposition to the 
metric used by Fitzpatrick & Dunn, (2019) where the score distribution was known, allowing a 
mapping from scores to percentiles. 
 
In order to compensate for this difficulty, we translate each score into a “quality flag”, informing 
the user about the quality of the analogue. As mentioned by the authors of the metric themselves: 
“Rather than [theoretically calculating] these parameters from the moments of the specific φ 
distributions, we propose to generate the distribution of the test statistic and the quantiles by a 
Monte Carlo simulation.” (Aslan & Zech, 2002, sec. 2.3). Assuming the distribution of the statistic 
is specific only to the set of climate indices, we approximated distributions by computing the 
statistic over random pairs of cells of the reference data, chosen within all North America but only 
cells with a population density above 10 hab./km². The statistic was computed over 200 000 
random pairs, for each of the 6120 possible indices combinations. The percentiles of the 
approximated distributions were saved to disk.  
 
With this data, we can now translate any given dissimilarity score into an approximated rank of 
the estimated distribution. For example, if a score maps to the 50th percentile of the distribution, 
we can interpret this by saying: there is a 50/50 chance of having a better analogue by choosing 
another random point within North America. This type of comparison seemed good enough for 
the needs of this project. Only 101 percentiles (0, 1, … 100) of each distribution were saved in 
the Monte-Carlo process; the rank of any given score is obtained by linear interpolation between 
those. 
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The analog finder further simplifies the output by mapping the ranks to quality flags, as detailed 
in Table 4. The bounds of each range can be modified in the notebook, but are fixed for the 
dashboard user-interface.  
 

Table 4 Analogue quality categories 

Color Description Percentile range 

 Excellent [ 0, 1 ] 

 Good ] 1, 5 ] 

 Average ] 5, 10] 

 Poor ] 10, 100] 

The approximate distributions are computed with the analog_quantiles.py script and stored in 

a netCDF file available on the THREDDS server of PAVICS. 

 

3.1.3 Finding the best analog for each simulation  

The first version of the prototype selected the “best” analog simply by finding the cell with the 
lowest dissimilarity score. The fact that the data doesn’t pass the self-analog test (see above) was 
extremely obvious with this method. Moreover, we realized that the dissimilarity fields computed 
were quite noisy: the “lowest” dissimilarity could be very similar to the target’s. The problem was 
exacerbated by the artificial selection of the population density which creates maps that are 
sparse in nature.  While, we can’t fix the self-analogue problem for our choice of indices (see 
above), we implemented a selection method that allowed smoothing of the results and yielded a 
spatial analog easier to interpret. In addition to the basic “min” method, the dashboard can be 
launched with either “closestN” or “closestPer”. 

• closestN: The N points with the lowest dissimilarity are found and the one closest to the 
target (in physical distance) is returned as the “best analog”. The default value for N is 10. 

• closestPer: The rank of the lowest dissimilarity is computed as 𝑅𝑚𝑖𝑛, all points with ranks 
in the range [𝑅𝑚𝑖𝑛 , 𝑅𝑚𝑖𝑛 + Δ𝑅]  are found and the closest (physical distance) one is 
returned as the “best analog”. The default value of Δ𝑅 is 1. 

The “closestPer” method was chosen as the default. Compared to “closestN”, it ensures that the 
analogues of all points considered for the “best analog” are of similar quality. 
 

3.1.4 Ranking the best analogs 

Once the analog finder code is run, we get one best analog location for each realization of the 
ensemble (12 by default). In the dashboard, the user can switch between the results of each 
realization through a row of buttons at the top of the page (Figure 3-1). Two methods for ranking 
the realizations were implemented: by score or by representativeness of the ensemble. 
 
The first way simply ranks the realization by the dissimilarity score of the best analog, in ascending 
order. For the second method, each realization is compared to the ensemble mean through a 
multivariate Z-score. Considering a space in 𝑑 dimensions (one for each climate index in the set), 

𝐗 is the matrix of the 𝑑-dimensional points, one for each 𝑁 realizations and 30 years of the target 
period. 𝐗𝑖 is the 30-year vector of points of a single realization. With 〈  〉 the ensemble average, 
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    ̅ the temporal average, ‖    ‖ the Euclidean norm and 𝜎(    ) the standard deviation across time, 
our representativeness score 𝑆𝑖 is: 

𝑆𝑖 =  ‖
𝐗𝑖
̅̅̅ −  〈𝐗〉̅̅ ̅̅

𝜎(〈𝐗〉)
‖ 

This score represents the standardized distance of each realization to the ensemble average. In 
the final dashboard, the realizations are ranked according to their score 𝑆,.in ascending order. 
Button color indicates the quality flag category from section 3.1.2, as detailed in Table 4.   

All processes described here are implemented directly in the Dashboard.ipynb and 

Step_by_step.ipynb notebooks. While there shouldn’t be any difference between these two and 

between the Github and PAVICS versions, one can consider the Dashboard.ipynb notebook 

provided through pbourg’s public folder on PAVICS’ Jupyterhub as the master version. 

 

3.2 VISUALIZATION PROTOTYPE 

Aside from the technical choices for identifying the best analogs for a specific user query, the 
issue of results visualization is very important, as this will guide its interpretation. Several key 
aspects were identified at the beginning of the project. The control panel of the web interface 
should include sub-panels for: 1) the selected options; 2) a map on which the target city as well 
as all analog locations are marked, and where the user can highlight one specific analog by cursor 
movement); 3) climate change uncertainty diagrams that highlight the analog-related underlying 
climate scenario among the ensemble, for each selected index; and 4) similarity diagrams that 
show how good  the analog is, for each selected index. The last two sub-panels are necessary to 
guide the user in her/his interpretation of the analogs. 
 
In the final dashboard, all these elements were included. Figure 3-1 shows the dashboard once 
a query has been analyzed and spatial analogs were found, and Figure 3-2 shows one univariate 
analogy panel expanded. The next sections describe each panel. 
 
The goal of this project was to build a prototype of a web application that could be embedded in 
the ClimateData.ca portal. As such, several elements may not be in a deployment-ready state 
and the user interface could benefit from many changes, small or not. In the following, we highlight 
some elements that we feel are missing. Some we tried to implement, but failed to do so in the 
time available, others we simply think would be feasible and useful. 
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Figure 3-1 Dashboard after an analogue search 

3.2.1 Sidebar: Search query builder 

All search parameters are available on a sidebar of the dashboard (which can be collapsed). The 
description of each element was given above. Each time the user changes their selection of target 
city, scenario or period, the list of available climate indices is updated, removing those considered 
unusable. A small summary paragraph lists the population density of the currently selected city, 
as well as the bounds of the range depending on the selected factor. The number of candidate 
pixels (cells with a density within the range) is given so that the user can estimate the time 
necessary for the analog search. Once the “run analogues search” button is pressed, the progress 
bar starts moving. 
 
 
Missing elements 
Like in most of the dashboard, some help text is missing to inform the user about the different 
parameters and climate indices. A good way to add this would be an info bubble that pops up 
when the cursor (or finger) hovers over the title of the control widget. A complete description of 
the app, as an external web page, could also help.  
 
There seems to be a difficulty in linking the computing library (dask) with the widget one (panel) 
in order to have a progress bar that shows a real percentage of the work done and updates in 
real time. For now, it only shows that the search is active. Moreover, once the search is done, 
there is a delay where the progress bar stops moving but the visualisation widgets are being 
generated. 
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3.2.2 Realization selector 

The top of the main section consists of a row of rounded buttons that allows switching between 
the different realizations and their associated best analog. As said above, the realizations are 
ranked (from left to right) according to their representativeness score 𝑆𝑖 and the button is coloured 
according to the quality of the analogue. Each of the 4 categories is mapped to a single colour, 
the mapping is the same as on the legend of the map below. 
 
Missing elements 
This small section could also benefit from some explanations, either directly in the app or as a 
hover-over text bubble.  
 

3.2.3 Map of analogues and summary table 

The map shows all best analogues as a coloured dot linked to the target city, a purple star. The 
currently selected analogue’s dot is circled with a gold ring. The colour of each dot is related to 
the quality of the analogue and is mapped to one of the 4 categories, as shown in the legend of 
the map. In many cases, several realizations will find the same best analogs, resulting in many 
dots superimposed on the map. A hover text bubble was added to the lines and dots so that the 
user has some way to know when this happens. 
 
The summary table adjacent to the map provides statistics about the currently selected analogue. 
The quality of the analogue is given through the name of the category, the raw dissimilarity score 
and the rounded percentile, expressed as the percentage of random pairs with a better (or similar) 
score (see section 223.1.2). The representativeness score is also given. 
 
The table lists different metadata elements, comparing the selected analogue and the target.  The 
“Urban Area” given for the analogue is taken from a list of populated places derived from a dataset 
of Natural Earth. The table lists the closest populated place, which may or may not be the main 
official administrative unit of the grid cell. The “near” keyword was added because of this 
uncertainty. The full name of the model run that returns this analogue is listed in the target’s data 
source. 
 
Missing elements 
Again, information about the different statistics and field listed should be added. As noted in the 
contract, it would nice to be able to switch realization by clicking the dots in the map, in addition 
to the button row. 

The list of named places used to associate an analogue location with a city name is stored on 
PAVICS’ geoserver (public:ne_10m_populated_places). 

 

3.2.4 Univariate analogues 

Below the map and table, each climate index in the selected set is further analyzed in its own 
collapsible “card”. 
 
The “univariate analogue” refers to the spatial analog analysis re-run on the same data as the 
best analog, but with a single climate index. It can offer a way to understand which indices of the 
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selected set contribute negatively or positively to the overall dissimilarity score. In addition to this 
univariate dissimilarity score, the panel gives a description of the index. 
 
The first plot approximates the distribution of the index over the 30 years of each period. It shows 
the kernel density estimates of the index over the reference period (1991-2020, white) and target 
period (purple) for the target city (data from the selected realization) and over the reference period 
for the best analog (data from ERA5-Land, gold).  The second plot is unidimensional and shows 
the averages of the same three distributions as on the first plot.  The kernel density estimate plot 
was not mentioned in the contract, but it seemed to convey more useful information than the 
comparison of 30-year average values, which was proposed. However, estimating a distribution 
with only 30 values could potentially result in problems or unusual distribution shapes. 
 
Finally, the third plot shows the full timeseries of all realizations over the target city and the 
timeseries of the best analog over the reference period. The currently selected realization is 
highlighted in purple. The target period is delimited with two vertical blue lines and the data from 
the analog is re-plotted over the reference period so one can visually inspect the difference 
between this and the target’s data.  
 

 
Figure 3-2 Univariate analogue panel 
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Missing elements 
In addition to improving documentation, some work on the layout of these “cards” could be 
beneficial. 
 
Currently the distribution plots are created via kernel-density estimation (KDE) whose smoothing 
algorithms can result in densities for negative climate index values even for those indices where 
this is not physically possible.  Despite this limitation it was felt that the ease of comparison of 
distribution overlap provided by the KDE plots was more beneficial than not.   Future 
improvements could look into mechanisms for ‘clipping’ KDE density values for climate indices 
which cannot have values below zero. 
 

This section describes the visualizations as implemented in Dashboard.ipynb. The usage of 

matplotlib instead of bokeh as a plotting backend in Step_by_step.ipynb yields different 

results in that notebook. Again, the dashboard provided through PAVICS should be considered the 
master version is any differences are found with the other versions.



 

29 

4. DELIVERY OF THE DATASETS AND CODE 
 

 
The final products of this project have been delivered: datasets, python code and Jupyter 
notebooks.  Datasets are available on PAVICS’ thredds server. The code and notebooks are 
shared to the CCCS through a private Github repository. The README file of this repository 
indicates the purpose of each file and their usability state. Details are presented in this report.  
Finally, the dashboard and the notebook were shared through PAVICS’s JuypterHub platform. 
 
Disclaimer 

“The python code, notebooks and data files associated with this contract are provided AS IS 
and their usage is at the own risk of its user. Ouranos makes no warranties, expressed or 
implied, of merchantability and fitness for a particular purpose of the data or code, as well as 
of non-infringement of rights of others. Ouranos shall not be liable for damages or losses 
resulting from the use, application, or interpretation of the provided material”.  

 
Datasets (public): 
https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/catalog/birdhouse/ouranos/spatial-analogs/catalog.html 

This thredds catalog provides: 

• masks.nc : A collection of time-invariant masks on the ERA5-Land grid. 

• era5-land.ncml : The climate indices over the reference data and period. Also provides 

the density mask. 

• cmip6_single.ncml, cmip6_scaling.ncml and cmip6_dqm.ncml : The three 

different flavours of the simulated climate indices. 

• cities.nc : A netCDF version of the Canadian cities metadata. 

• benchmarks.nc : The approximate distributions of dissimilarity scores for each possible 

climate index combination. 
 
Geographical data: 
https://pavics.ouranos.ca/geoserver/web/wicket/bookmarkable/org.geoserver.web.demo.MapPreviewPage?3 

• public:ne_10m_populated_places: For use by the dashboard, the list of named 

places used by the dashboard to associate each found analogue with a city is provided by 
a Geoserver instance within the PAVICS ecosystem. 

• analogs:cities: The Canadian cities data (almost the same as cities.nc), but an 

encoding bug forbids the dashboard from using that version for now. The data is provided 
in a temporary file beside the dashboard’s notebook. 

 

Code (private repository, requires a GitHub account and an invitation): 
https://github.com/Ouranosinc/analogues_spatiaux 

 
Dynamic notebooks (read-only, requires a PAVICS account): 
https://pavics.ouranos.ca/jupyter/user/pbourg/lab/tree/public/pbourg-public/Analogues%20spatiaux/Dashboard.ipynb 
  

  

https://pavics.ouranos.ca/twitcher/ows/proxy/thredds/catalog/birdhouse/ouranos/spatial-analogs/catalog.html
https://pavics.ouranos.ca/geoserver/web/wicket/bookmarkable/org.geoserver.web.demo.MapPreviewPage?3
https://github.com/Ouranosinc/analogues_spatiaux
https://pavics.ouranos.ca/jupyter/user/pbourg/lab/tree/public/pbourg-public/Analogues%20spatiaux/Dashboard.ipynb
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CONCLUSION 
 

 
The current report, associated code and datasets provide a functional prototype for finding 
contemporary spatial climate analogues for Canadian cities, identifying locations which currently 
have similar climatic conditions to those projected in the future for the cities of interest.  The 
prototype enables customized calculations of climate analogues offering a flexible yet straight 
forward toolset for users to explore potential futures changes in climate. 
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APPENDICES 
 

 

APPENDIX A – REGRIDDING OF THE HIGH-RESOLUTION POPULATION COUNT TOWARDS THE 

REFERENCE GRID 
 
 
As the GPWv4 UN WPP-adjusted population density is already calibrated as so to only include 
population on the land-covered fraction of the grid point, it cannot be easily regridded to the 
reference grid. We decided to instead regrid the population count and divide it by the land area of 
the target grid cell in order to get our population density map. But, instead of using the coarse 
land fraction mask provided with ERA5-land, we used the land area also provided in GPWv4 and 
aggregated it as well to the reference grid. Figure A1 summarizes this process. 
 
The final result (𝐷𝑒𝑟𝑎 in the figure), represent the population density on the land portion of the 
ERA5-land grid cell. 
 
 

 
 
Figure 0-1 Procedure for the regridding of the adjusted population density 

 
 
Variables of figure 8-1: 

• 𝐴𝑔𝑝𝑤 ,  𝐴𝑒𝑟𝑎 =  Cell area [km²] 

• 𝐶𝑔𝑝𝑤 = Population count [ - ] 

• 𝑅𝑔𝑝𝑤, 𝑅𝑒𝑟𝑎 = Raw population density [hab / km²]  

• 𝐿𝑔𝑝𝑤 ,  𝐿𝑒𝑟𝑎 =  Land area [km²] 

• 𝐷𝑒𝑟𝑎 =  Land-weighted population density [had / km²] 
  



 

34 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
In the wake of a series of extreme-weather events that highlighted the vulnerability of Quebec 
communities, a group of progressive-minded scientists and policymakers decided to collaborate 
on potential solutions; Ouranos is the result. 
In 2001, Ouranos was created as a joint initiative of the Québec government, Hydro-Québec and 
Environment Canada, with the financial support of Valorisation-Recherche-Québec. 
Ouranos aims to provide Québec and the rest of Canada with expertise in both climate science 
and adaptation strategies. 
Ouranos engages in focused, practical science in support of sound decisions related to climate 
change and its impacts. Our approach actively involves an expanded network of researchers, 
experts, practitioners and policy-makers. 


