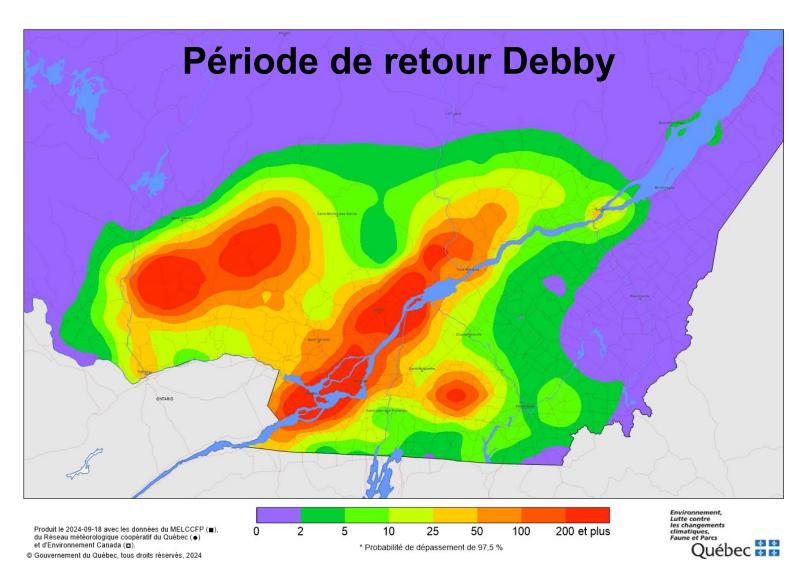
Pluies extrêmes en climat futur : l'impérative adaptation aux changements climatiques

Alain Mailhot
Guillaume Talbot
Samuel Bolduc

INRS-ETE

Symposium Ouranos 2025

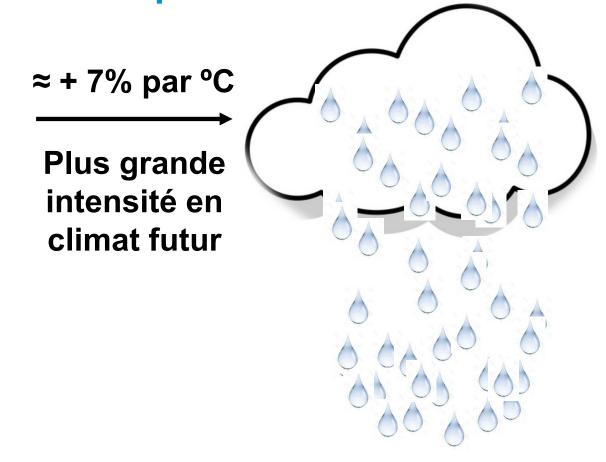

Session Changements projetés des phénomènes climatiques

29 janvier 2025

Hôtel Bonaventure, Montréal, Québec

Enjeux liés aux précipitations extrêmes : Debby 8-9 août 2024

- 120 à plus de 160 mm en 24 h le long de la vallée du St-Laurent et les Laurentides
- Période de retour de 100 ans à plus de 200 ans
- Le « pire évènement de pluie » jamais vu dans le Grand Montréal (La Presse, 10 août 2024)
- Plus coûteux aléas de l'histoire du Québec : près de 2,5 milliards\$ de dommages assurés (Bureau d'Assurance du Canada, 13 septembre 2024)



Intensification des pluies extrêmes

- Consensus sur une augmentation des intensités des précipitations extrêmes (mais pas sur l'ampleur des changements)
- Hausses plus importantes
 - pour les événements plus courts et plus extrêmes
 - plus on avance dans le siècle
 - à mesure qu'augmente les concentrations de GES
- Impacts majeurs en matière d'inondations fluviales et pluviales
- Impératif d'intégrer les CC dans la planification et la conception

Pourquoi les précipitations extrêmes seront affectées par les CC ?

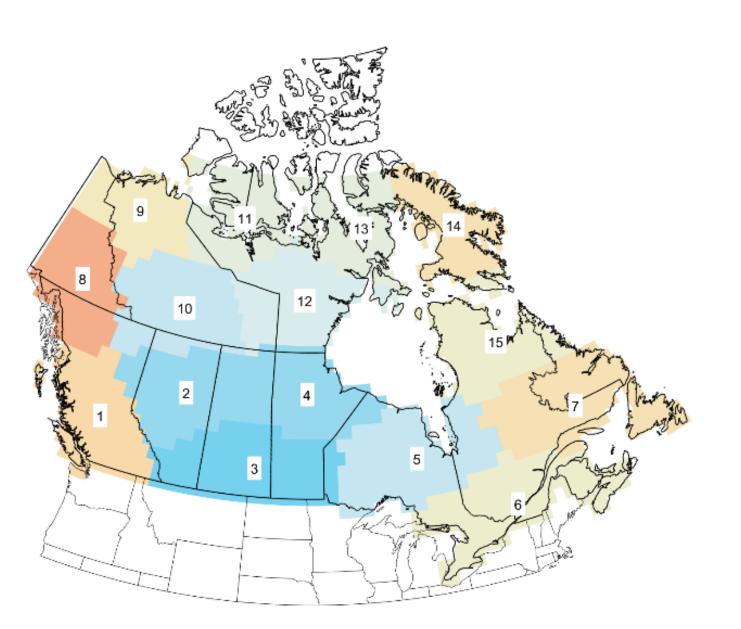
Passé

Futur (atmosphère + chaude → + humidité → + pluie)

Majorations basées sur la relation pluie-température

- Relation utilisée par plusieurs organisations (p. ex. CSA)
- Basées sur une analyse des ensembles CMIP6 et CORDEX
- · Relation entre pluies extrêmes et températures

$$I_f = I_r (1 + \alpha)^{\Delta T}$$

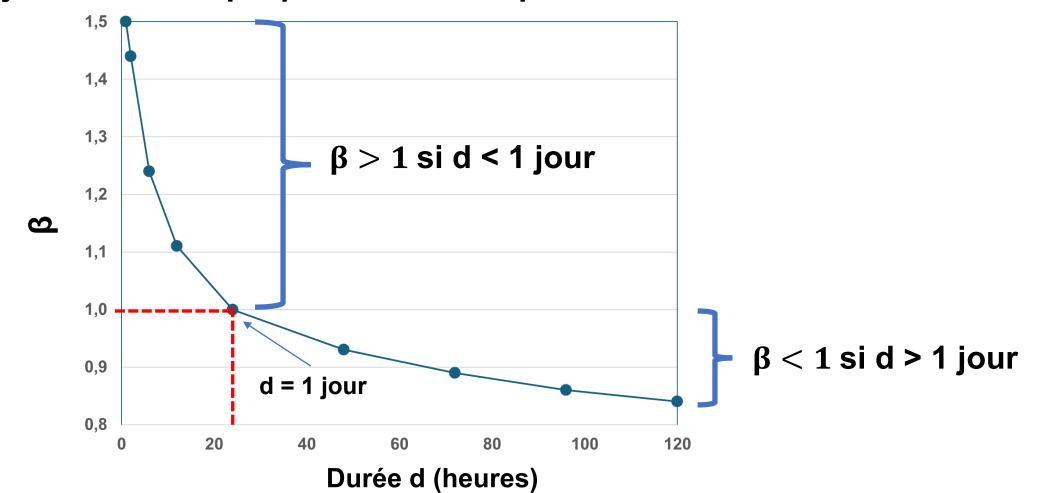

○ I_f: intensité période future

I_r: intensité période de référence

 \circ α : coefficient pluie-température (P-T)

- ΔT : variation de température entre périodes future et de référence
- α ≈ 7.0%/°C selon l'équation de Clausius-Clapeyron (C-C)
- α dépend de la région et de la durée $d : \alpha(d) = \beta(d) \alpha(1 \text{ jour})$
- △T : variation locale température moyenne annuelle

Coefficients P-T régionaux


	0.07
	0.06
	0.05
-	0.04
	0.03
	0.02
	0.01

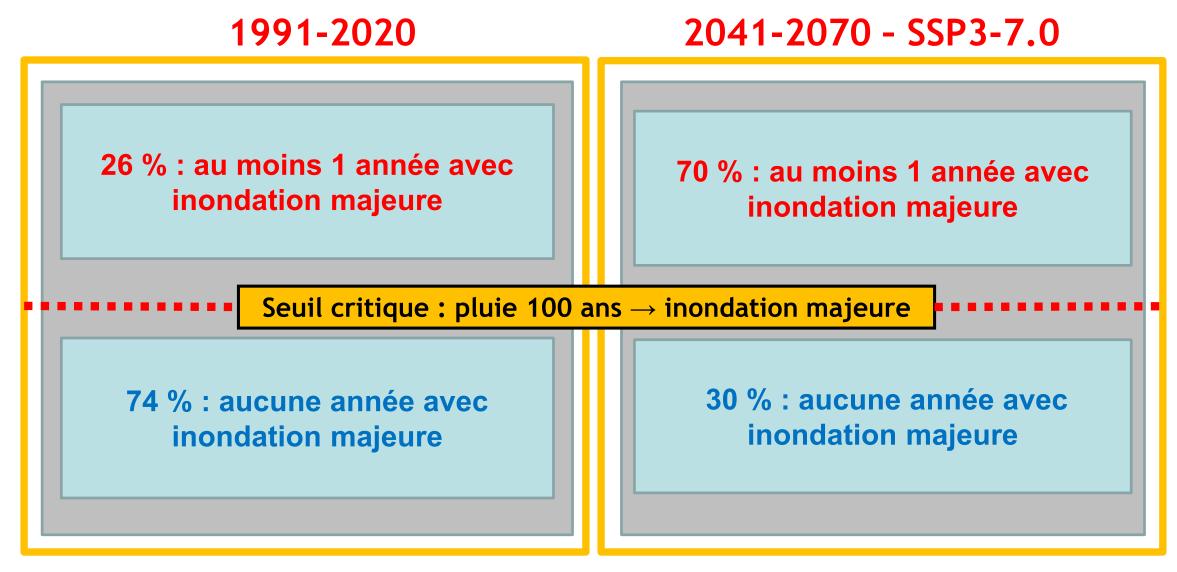
Région	α (%/°C)
1	4.2
2	2.1
3	1.9
4	2.1
5	2.6
6 (sud Québec)	3.4
7	3.8
8	4.8
9	3.6
10	2.6
11	3.1
12	2.8
13	3.2
14	3.9
15	3.3
	6

Coefficient P-T de durée d < 1 jour

$$\alpha(d) = \beta(d) \alpha(1 \text{ jour})$$

- $\beta(d)$: facteur de majoration pour la durée d (β = 1 pour d = 1 jour)
- Majoration identique pour toutes les périodes de retour

Que signifie une 'intensification' des pluies en climat futur ? (région sud du Québec)


Référence (1961-2021) 2071-2100 - SSP3-7.0 Pluie de 122.8 mm ou plus en 24 h. Pluie de 122.8 mm ou plus en 24 h. (période de retour ≈ 200 ans) (période de retour 100 ans) +18% Pluie de 100.4 mm ou plus en 24 h. Pluie de 100.4 mm ou plus en 24 h. (période de retour 100 ans) (période de retour 25 ans)

Où en sommes-nous ? Quels sont les enjeux ?

- Recommandations précédentes cohérentes avec recommandations antérieures, notamment celles utilisées au Québec
- Obligation de la communauté scientifique se concerter et de fournir aux praticiens les projections climatiques basées sur la 'meilleure science'
- Important de fournir des balises et des <u>lignes directrices claires et uniformes</u> sur la façon de prendre en compte les CC dans la pratique
- Occasion de corriger les 'déficits d'adaptation' ou les mésadaptations du passé
- Plusieurs mesures dites 'd'adaptation' ne sont pas 'nouvelles' en soi
- Toute réduction des risques passés est un gain face aux risques futurs
- Adaptation est essentielle! Incertitudes sur projections ne doivent pas servir de prétexte au statu quo!
- Enjeux MAJEURS dans « l'opérationalisation » des recommandations

Impact en termes de probabilité d'inondation majeure

