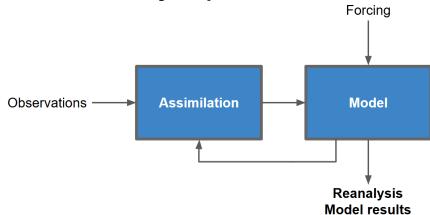
A description of the Canadian Surface Reanalysis-Land (CaSR-Land) and Rivers (CaSR-Rivers)

^aGonzalo Leonardini, ^aDorothy Durnford, ^bVincent Fortin, ^bÉtienne Gaborit, ^bVincent Vionnet, ^aNathalie Gauthier, ^aVincent Poitras, ^aAndré Bertoncini & ^aReine Parent

^aCanadian Centre for Meteorological and Environmental Prediction, Meteorological Service of Canada, Environment and Climate Change Canada, Dorval, QC H9P1J3, Canada

^bEnvironmental Numerical Prediction Research, Meteorological Research Division, Environment and Climate Change Canada, Dorval, QC H9P1J3, Canada

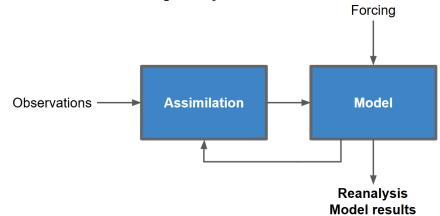

REANALYSIS, OVERVIEW AND RELEVANCE

What is reanalysis?

Reanalysis data provide the most complete picture currently possible of past weather and climate. They are a blend of observations with past short-range weather forecasts rerun with modern weather forecasting models. They are globally complete and consistent in time and are sometimes referred to as "maps without gaps"

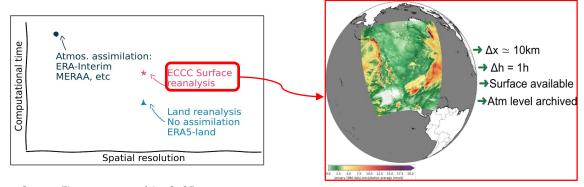
Source: ECMWF (https://www.ecmwf.int/en/about/mediacentre/focus/2023/fact-sheet-reanalysis)

How are reanalysis produced?


REANALYSIS, OVERVIEW AND RELEVANCE

What is reanalysis?

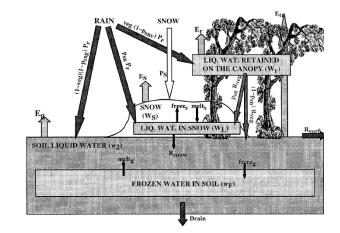
Reanalysis data provide the most complete picture currently possible of past weather and climate. They are a blend of observations with past short-range weather forecasts rerun with modern weather forecasting models. They are globally complete and consistent in time and are sometimes referred to as "maps without gaps"


Source: ECMWF (https://www.ecmwf.int/en/about/media-centre/focus/2023/fact-sheet-reanalysis)

How are reanalysis produced?

The surface reanalysis at Environment and Climate Change Canada (ECCC)

 The Canadian Surface Reanalysis (CaSR, Gasset et al., 2021) is based on online and offline subsystems – all based on existing ECCC operational systems

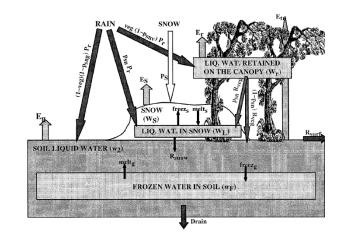

Source: Figure courtesy of the CaSR team

- CaSR: Provides atmospheric and land-surface descriptions across multiple vertical layers
- ISBA Model: Utilized as part of land-surface assimilation and model processing
- Presentation: Nicolas Gasset will discuss updates to the new CaSR version in Session 9 (16:00–17:30)

WHY TWO NEW REANALYSIS PRODUCTS AT ECCC?

Limitations of CaSR v2.1

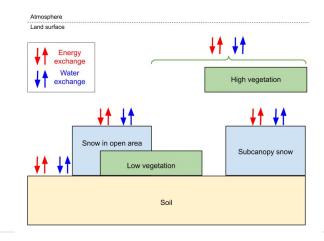
- The CaSR system is currently not designed to directly produce outputs for soil variables and hydrological processes. Its primary focus is on providing high-quality forcings for advanced surface and hydrological models
- ISBA model, integrated with CaSR, has demonstrated certain limitations in its applications
- CaSR is based on CaLDAS-Screen assimilation method, which is not appropriate for hydrology (noisy and tenfold over-estimation of river dischage during summer)



Interaction between Soil-Biosphere-Atmosphere (ISBA) Land-surface model (Bélair et al., 2003a,b)

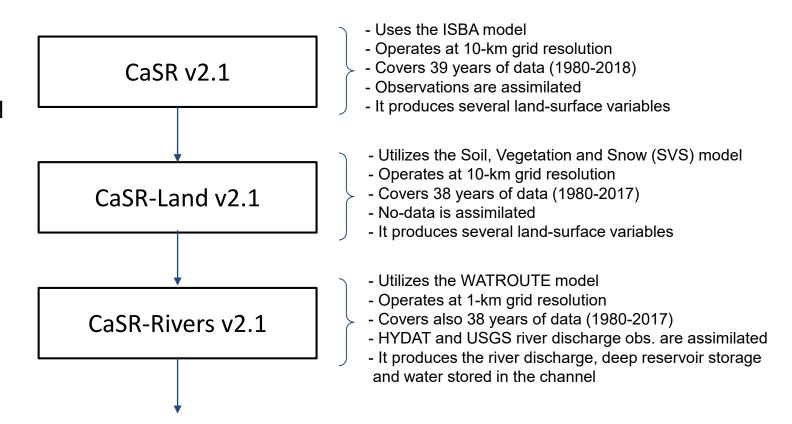
WHY TWO NEW REANALYSIS PRODUCTS AT ECCC?

Limitations of CaSR v2.1


- The CaSR system is currently not designed to directly produce outputs for soil variables and hydrological processes. Its primary focus is on providing high-quality forcings for advanced surface and hydrological models
- ISBA model, integrated with CaSR, has demonstrated certain limitations in its applications
- CaSR is based on CaLDAS-Screen assimilation method, which is not appropriate for hydrology (noisy and tenfold over-estimation of river dischage during summer)

Interaction between Soil-Biosphere-Atmosphere (ISBA) Land-surface model (Bélair et al., 2003a,b)

Why CasR-Land and CaSR-Rivers ?

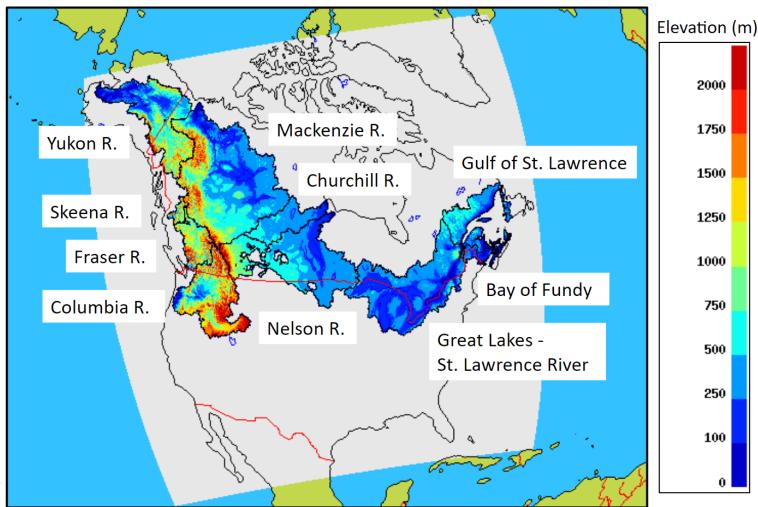

- The offline land-surface simulations driven by CaSR employ SVS land surface model, which is a a more advanced model compared to ISBA
- These simulations ensure the closure of water and energy balances throughout the simulation period
- They provide consistent and reliable input data for hydrological modeling
- o This marks the first instance of river reanalysis being produced at ECCC

Soil, Vegetation and Snow (**SVS**) Land-surface model (Alavi et al., 2016; Husain et al. 2016; Leonardini et al., 2021)

UNDERSTANDING CASR-LAND AND CASR-RIVERS

- The production relies on:
 - models and tools developped and used operationaly at the Canadian Centre for Meteorological and Environmental Prediction (CCMEP)
 - the model structure of GEM-Hydro (Gaborit et al., 2025, 2017; Vionnet et al., 2020)
- CaSR v2.1 provides the atmospheric forcing to drive CaSR-Land
- CaSR-Land fields are used to pilot CaSR-Rivers

SIMULATION DOMAINS


CaSR-Land (grey); CaSR-Rivers (colours)

Spatial domain

- CaSR-Land covers most of the North-America
- CaSR-Rivers cover 10 watersheds over Canada and US, corresponding to the ~55% of the Canadian surface

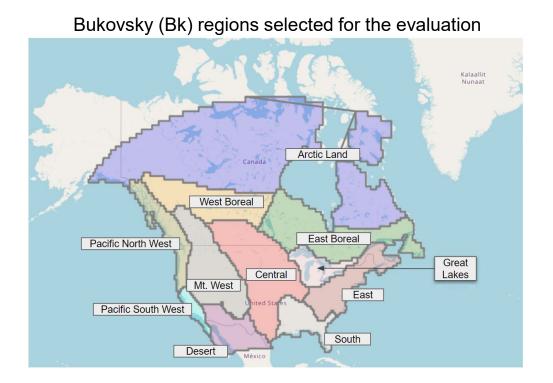
Temporal domain

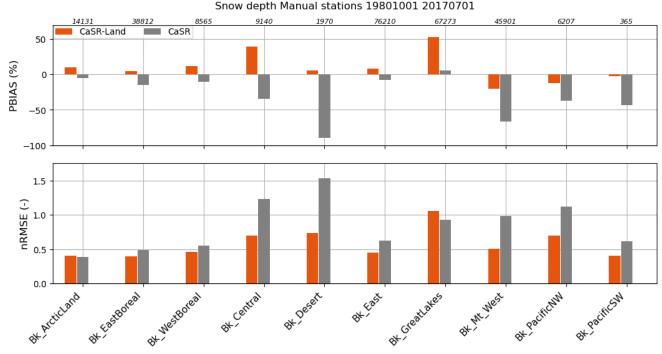
o From 1980 to 2017

EVALUATION HIGHLIGHTS

- Evaluations performed against the most up-to-date historical in-situ observations and against CaSR v2.1
- Fields evaluated are: 1.5 air and dewpoint temperatures, snow depth, snow water equivalent, soil moisture, river discharge
- CaSR-Land v2.1 performs better than CaSR v2.1 for all evaluated variables due to the integration of a more sophisticated land-surface model into CaSR-Land
- CaSR-Rivers evaluation shows encouraging results

Summary of improvements


Impact level	color
Neutral	
Minor	
Major	


For CaSR-Land v2.1, the **impact level** represents the degree of improvement relative to the original CaSR v2.1 dataset. In the case of CaSR-Rivers v2.1, it reflects the level of enhancement compared to the open-loop simulation.

Model	Fields	Impact level
CaSR-Land v2.1	Snow water equivalent	
	Snow depth	
	1.5 m air temperature	
	1.5 m dew-point temperature	
	10 m wind speed	
	Soil moisture	
CaSR-Rivers v2.1	River discharge	

EVALUATION OF SNOW DEPTH FOR THE PERIOD 1980-2017

- · Manual snow depth observations were utilized as part of the evaluation process
- Snow depth field from CaSR v2.1 results from a snow analysis. Then, the use of manual data allows an independent evaluation of the snow analysis
- CaSR-Land shows better PBIAS and nRMSE compared to CaSR on Western domains
- CaSR-Land also shows better PBIAS than CaSR over all the rest of the domains, except Great Lakes, Central and Arctic Land. It is not clear why CaSR-Land degrades the scores in these regions
- Similar results are obtained for the SWE (not shown in this presentation).

DATA DISSEMINATION

Guidelines for variable selection.

- o CaSR-Land
- Prioritize variables used for piloting hydrological models
- Avoid replicating the variables already disseminated in CaSR v2.1, except for those that demonstrated superior performance, such as snow depth and soil moisture
- CaSR-Rivers

Variables already disseminated by ECCC's operational Deterministic Hydrological Prediction System (DHPS)

Temporal resolution

 Time steps include 1-hour, 12-hour or 24-hour intervals depending on the variable

File format

Data provided in NetCDF format

Data Platforms

- The Canadian Surface Prediction Archive (CaSPAr), will host the full dataset for comprehensive access
- Federated Research Data Repository (FRDR) will host the 2014-2017 subset of data, corresponding to the dataset referenced in the submitted article

Model	Variable	Time Resolution
	Accumulation of surface runoff amount	1 h
	Accumulation of lateral sub-surface runoff amount	1 h
	Drainage amount through base of soil model	1 h
	Accumulation of aggregated surface evaporation	1 h
	Accumulation of land surface evaporation amount	1 h
	Fraction of area occupied by soil in the model grid	1 h
CaSR-Land	Aggregate surface radiative temperature	1 h
	1.5 m air temperature	1 h
	1.5 m dew point temperature	1 h
	U-component of the wind	1 h
	V-component of the wind	1 h
	Snow depth	24 h
	Snow water equivalent	24 h
	Volumetric water content of soil (for seven layers)	24 h
CaSR-Rivers	River discharge	1 h
	Deep reservoir storage	12 h
	Water stored in the channel	12 h

OUTLINE OF NEXT STEPS

CaSR-Land v3.1

- Forced by CaSR v3.1
- o Horizontal resolution is under discussion, with potential options being 2.5 km, 10 km, or both
- Same simulation period of CaSR v3.1 (1980-2023)
- Same domain of CaSR v3.1
- Latest official and closed version of ECCC's Systems
- Simulate small lake dynamics with the Canadian Small Lake Model (CSLM)

CaSR-Rivers v3.1

- Forced by v3.1 of CaSR-Land
- o Add more river basins according to the latest Deterministic Hydrological Prediction System (DHPS) version
- With updated version of data assimilation system and of WATROUTE model as per the most recent version of DHPS
- Updated quality control of assimilated streamflow data

SUMMARY AND CONCLUDING REMARKS

- Two new derived products, CaSR-Land and CaSR-Rivers, have been developed at ECCC, covering North America and 10 watersheds across Canada for the period 1980–2017
- CaSR-Land v2.1, which integrates the SVS model, has demonstrated improved results compared to CaSR v2.1
- CaSR-Land and -Rivers v2.1 data is close to be disseminated through CaSPAr
- Discussions are underway for CaSR-Land and -Rivers v3.1 version

THANK YOU FOR YOUR ATTENTION

Questions and/or comments?

SUPPLEMENTARY MATERIAL

REFERENCES

- Bélair, S., Brown, R., Mailhot, J., Bilodeau, B., & Crevier, L. P. (2003). Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part II: Cold season results. *Journal of Hydrometeorology*, 4(2), 371-386.
- Bélair, S., Crevier, L. P., Mailhot, J., Bilodeau, B., & Delage, Y. (2003). Operational implementation of the ISBA land surface scheme in the Canadian regional weather forecast model. Part I: Warm season results. *Journal of hydrometeorology*, 4(2), 352-370.
- Gaborit, É., Mai, J., Princz, D. et al. Hydrologic outputs generated over the Great Lakes with a calibrated version of the GEM-Hydro model. Sci Data 12, 127 (2025). https://doi.org/10.1038/s41597-025-04409-x
- Gasset, N., Fortin, V., Dimitrijevic, M., Carrera, M., Bilodeau, B., Muncaster, R., ... & Mai, J. (2021). A 10 km North American precipitation and land-surface reanalysis based on the GEM atmospheric model. Hydrology and Earth System Sciences, 25(9), 4917-4945.
- Gaborit, É., Fortin, V., Xu, X., Seglenieks, F., Tolson, B., Fry, L. M., Hunter, T., Anctil, F. & Gronewold, A. D. (2017). A
 hydrological prediction system based on the SVS land-surface scheme: Efficient calibration of GEM-Hydro for streamflow
 simulation over the Lake Ontario basin. Hydrology and Earth System Sciences, 21(9), 4825-4839.
- Leonardini, G., F. Anctil, V. Vionnet, M. Abrahamowicz, D. F. Nadeau, and V. Fortin, 2021: Evaluation of the Snow Cover in the Soil, Vegetation, and Snow (SVS) Land Surface Model. *J. Hydrometeor.*, 22, 1663–1680, https://doi.org/10.1175/JHM-D-20-0249.1.
- Vionnet, V., Fortin, V., Gaborit, E., Roy, G., Abrahamowicz, M., Gasset, N., & Pomeroy, J. W. (2020). Assessing the factors governing the ability to predict late-spring flooding in cold-region mountain basins. *Hydrology and Earth System Sciences*, 24(4), 2141-2165.

HOW USERS CAN EXPLOIT THIS DATA

Observing System:

 Improve observational quality, support homogenization of long-term data records, and provide initial estimates for ungauged locations in Canada

• Modeling:

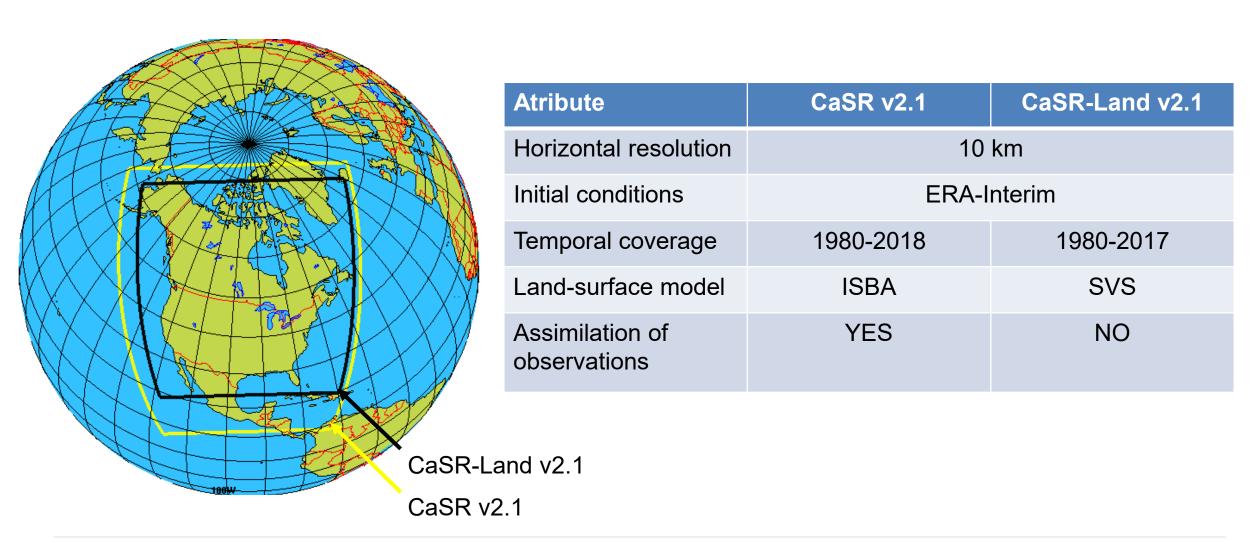
 Drive models and applications, including small-scale models with reanalysis as boundary conditions

• Climatologies:

Develop tools like the Agroclimate and Peak-Flow Atlases of Canada

Anomalies:

Analyze WMO-standard anomalies across Canada


Al Applications:

Train AI models for flood prediction and hydrological risk analysis

Post-Processing:

Estimate return periods for risk assessment

ATTRIBUTES OF CASR AND CASR-LAND V2.1

OBSERVATION DATASETS USED IN THE EVALUATION

Model	Fields (acronym)	Network*	Data availability	Evaluation period (selected months)	
CaSR-Land	Snow water equivalent	CanSWE, US-NE, US-NRCS	1928-	1980-2017 (Oct-Dec)	
	Snow depth				
	1.5 m air temperature		1980-		
	1.5 m dew-point temperature	SYNOP		1980-2017 (OND, JFM, AMJ, JAS)	
	10 m wind speed				
	Soil moisture	ISMN	1952-	1996-2017 (May-Sept)	
CaSR-Rivers	River discharge	HYDAT, USGS	1850-	1980-2017	

* Network description:

CanSWE : Canadian Historical SWE dataset (Vionnet et al., 2021)

US-NE : US snow surveys from New England states (MacKay et al., 1994)

US-NRCS : US snow surveys from Alaska and Western US (US Department of agriculture, 2008)

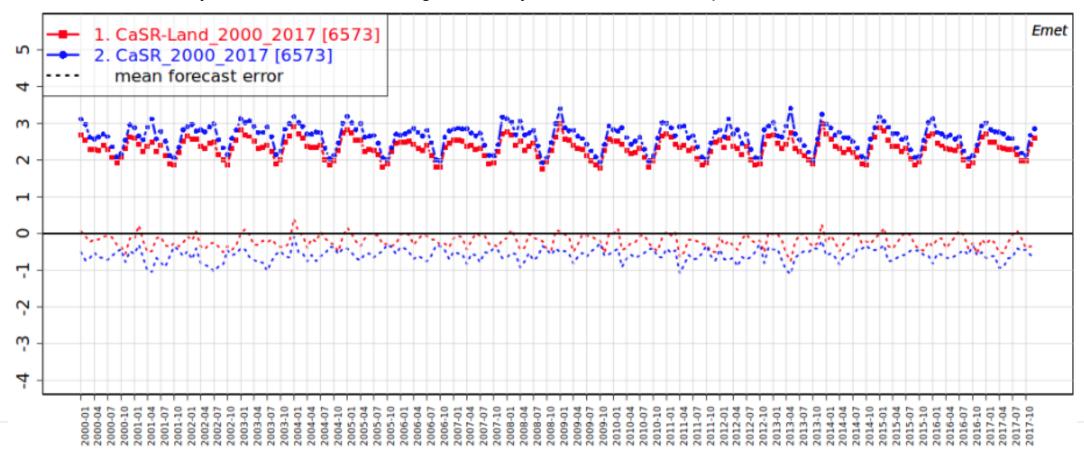
SYNOP : North American Surface Synoptic Observations

ISMN : International Soil Moisture Network (Dorigo et al., 2021)

HYDAT : Canada's hydrometric data portal

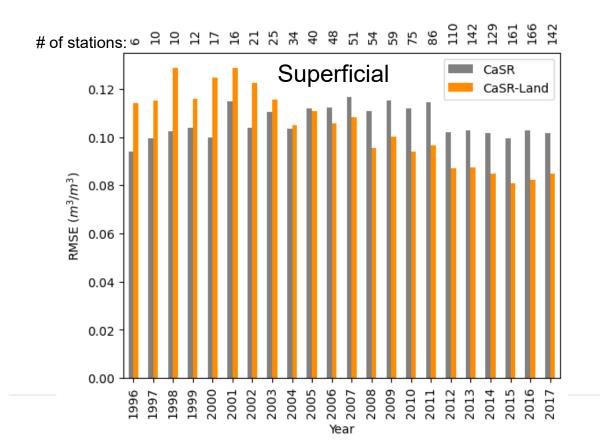
USGS: U.S. Geological Survey

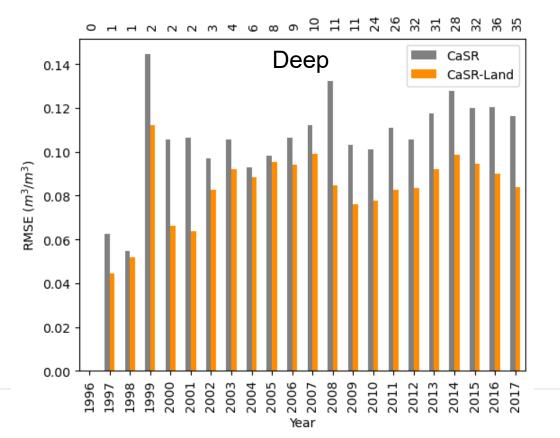
CaSR-Land/SVS 10 km vs CaSR v2.1/ISBA 10 km


rmse CaSR-Land_2015_2016 / CaSR_2015_2016		20151001 / 20151231	201 60101 /	201 60 63 0	20160701/
		All	All	All	All
Arctic Land CLIM	TD	0.28%	-0.82%	-6.24%	-4.13%
	TT	0.30%	1.09%	9.22%	3.81%
	UV	3.59%	1.60%	2.43%	4.35%
	TD	14.04%	14.41%	5.16%	8.54%
Central CLIM	TT	12.02%	17.17%	1.71%	0.69%
	UV	-0.32%	-1.10%	0.34%	-0.98%
	TD	-0.36%	-1.60%	1.97%	1.64%
Desert CLIM	TT	9.18%	10.89%	6.29%	-0.64%
	UV	1.59%	0.86%	0.41%	0.27%
	TD	1.24%	1.34%	-0.98%	0.67%
East Boreal CLIM	TT	2.90%	4.56%	17.21%	5.62%
	UV	2.12%	1.23%	2.71%	2.94%
	TD	5.07%	7.28%	0.14%	4.78%
East CLIM	TT	4.08%	8.99%	9.31%	6.90%
	UV	4.53%	3.90%	2.90%	2.10%
	TD	6.21%	8.68%	-3.62%	3.71%
Great Lakes CLIM	TT	3.72%	9.46%	9.01%	2.35%
	UV	3.58%	3.03%	3.18%	2.40%
	TD	7.97%	5.96%	3.38%	3.22%
Mt West CLIM	TT	8.60%	6.02%	1.50%	-4.26%
	UV	-1.48%	-1.37%	-1.22%	-2.94%
	TD	7.97%	7.41%	0.60%	3.54%
North America plus	TT	9.86%	10.99%	9.06%	3.23%
	UV	0.93%	0.39%	1.53%	1.28%
	TD	1.14%	4.53%	-3.60%	-3.07%
Pacific North West	TT	-7.18%	0.33%	9.31%	-0.73%
CLIM	UV	-4.22%	-3.92%	-0.92%	-0.50%
	TD	13.78%	8.24%	11.97%	12.92%
Pacific South West	TT	34.51%	19.02%	6.65%	26.05%
CLIM	UV	-10.45%	1.99%	-0.27%	-16.65%
	TD	10.43%	5.37%	6.94%	11.16%
South CLIM	TT	11.35%	11.77%	12.97%	11.57%
	UV	4.51%	4.97%	2.02%	-1.20%
	TD	10.48%	12.02%	-4.67%	2.92%
West Boreal CLIM	TT	10.05%	16.19%	10.68%	0.95%
	UV	2.60%	0.00%	3.51%	3.59%

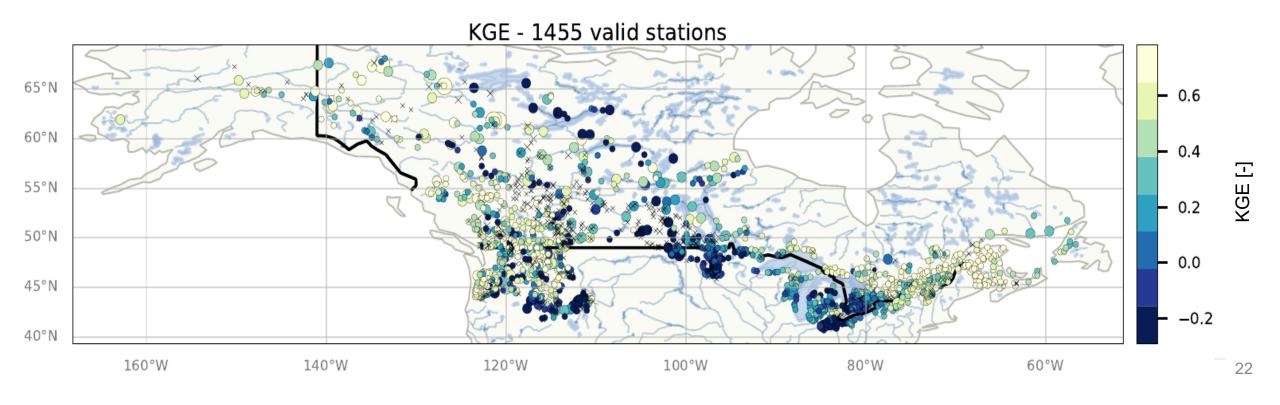
EVALUATION OF TD, TT AND UV FOR THE PERIOD 2015-2016

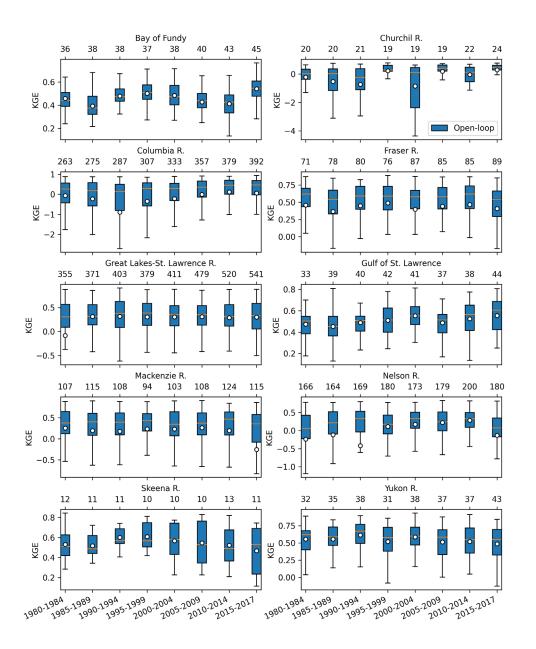
- The most significant enhancements of the RMSE of CaSR-Land compared to CaSR correspond to the months of OND and JFM
- Degradation of CaSR-Land for TD during AMJ months
- Degradation of CaSR-Land for UV in the Western regions
- Improvement of CaSR-Land compared to the CaSR across all variables within the North America plus domain


EVALUATION OF 1.5 m AIR TEMPERATURE FOR THE PERIOD 2000-2017

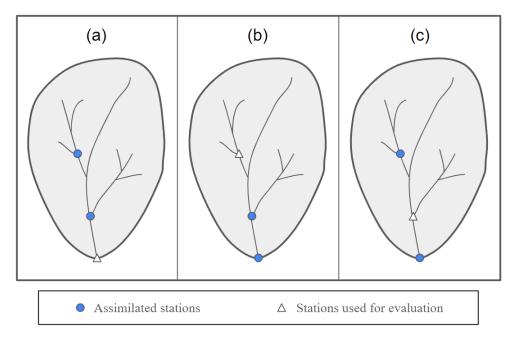

- CaSR-Land shows improvements of the RMSE with respect to CaSR for 1.5 m air temperature
- The most significant improvement of the RMSE of CaSR-Land with respect to CaSR occurs during the months from January to June
- The bias, as illustrated by the dotted lines in the figure, clearly demonstrates an improvement in CaSR-Land

SOIL MOISTURE EVALUATION (1996-2017)

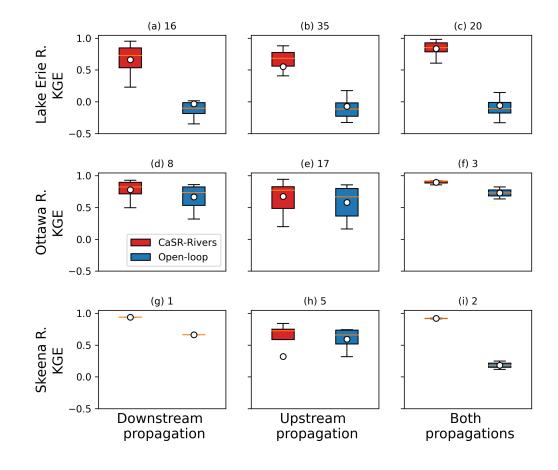

- Yearly evaluation between May 1 and September 30 for the superficial (0-5 cm) and deep (0-100 cm) layers
- CaSR-Land v2.1 outperformed CaSR v2.1 RMSE after 2004 in the superficial layer and all years in the deep layer
- CaSR v2.1 RMSE was smaller than CaSR-Land v2.1 prior 2005 in the superficial layer due to fewer stations concentrated in Southeast US
- Improvements in soil moisture estimation by CaSR-Land v2.1 are more evident in the deep layer


EVALUATION OF THE OPRN-LOOP FOR THE PERIOD2014-2017

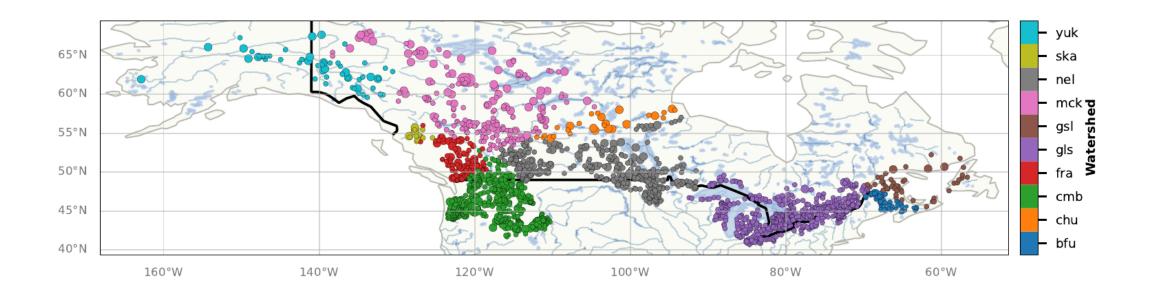
- GEM-Hydro (the open-loop version of CaSR-Rivers) successfully captures river discharge dynamics in most basins across
 the Western region
- The prairie and central areas demonstrate poorer performances due to the misrepresentation of subgrid lakes and wetlands
- The eastern basins generally perform well, except in the agricultural areas



OPEN-LOOP ASSESSMENT FOR THE 1980-2017 PERIOD


- Stable Overall Trends: KGE scores remain stable (1980–2017) with notable declines in specific periods and basins.
- Performance Challenges: Declines in Churchill (1985–2004) and Columbia/Great Lakes (1990–1994) reveal model limitations.
- Need for Investigation: Highlights the need to explore factors affecting model accuracy in these regions.

ASSESSMENT OF THE CASR-RIVERS V2.1



Configurations of the experiments used in the evaluation of CaSR-Rivers' assimilation technique: (a) Evaluation of the insertion and downstream propagation; (b) Evaluation of the upstream propagation; (c) evaluation of both propagations.

ASSIMILATED RIVER FLOW OBSERVATIONS INTO CASR-RIVERS

A total of 1704 gauges from the Canadian Hydrometric Database (HYDAT) and the United States Geological Survey (USGS) historical data were assimilated

